Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577355

RESUMO

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

2.
Nat Commun ; 15(1): 3325, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637537

RESUMO

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.

3.
ACS Nano ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620102

RESUMO

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.

4.
Poult Sci ; 103(6): 103700, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631231

RESUMO

The aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.

5.
Nat Rev Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658741

RESUMO

Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.

6.
Cell Rep ; 43(4): 113987, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517888

RESUMO

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.

7.
Mol Plant Pathol ; 25(3): e13444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481338

RESUMO

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.


Assuntos
Curvularia , Proteínas Fúngicas , Ferro , Ferro/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência
8.
Front Endocrinol (Lausanne) ; 15: 1362725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549762

RESUMO

Background: Early studies have revealed antagonistic effects associated with stacking chemotherapy (CT) and endocrine therapy (ET), thereby conventional wisdom does not advocate the simultaneous combination of these two treatment modalities. Limited clinical studies exist on the combined use of neoadjuvant CT (NACT) and neoadjuvant ET (NET), and there are no reported instances of concurrent neoadjuvant treatment for locally advanced breast cancer (LABC) using capecitabine and fulvestrant (FUL). Case presentation: We reported a 54-year-old woman who was diagnosed with hormone receptor-positive (HR+) LABC at our hospital. After neoadjuvant treatment involving two distinct CT regimens did not lead to tumor regression. Consequently, the patient was transitioned to concurrent capecitabine and FUL therapy. This change resulted in favorable pathological remission without any significant adverse events during treatment. Conclusions: A novel approach involving concurrent neoadjuvant therapy with CT and endocrine therapy may offer a potentially effective treatment avenue for some cases with HR+ LABC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Capecitabina/uso terapêutico , Fulvestranto/uso terapêutico , Resultado do Tratamento
9.
ChemSusChem ; : e202301775, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469618

RESUMO

Ammonia, a pivotal chemical feedstock and a potential hydrogen energy carrier, demands efficient synthesis as a key step in its utilization. The traditional Haber-Bosch process, known for its high energy consumption, has spurred researchers to seek ammonia synthesis under milder conditions. Advances in surface science and characterization technologies have deepened our understanding of the microscopic reaction mechanisms of ammonia synthesis. This article concentrates on gas-solid phase ammonia synthesis, initially exploring the latest breakthroughs and improvements in thermal catalytic synthesis. Building on this, it especially focuses on emerging external field-driven alternatives, such as photocatalysis, photothermal catalysis, and low-temperature plasma catalysis strategies. The paper concludes by discussing the future prospects and objectives of nitrogen fixation technologies. This comprehensive review is intended to provide profound insights for overcoming the inherent thermodynamic and kinetic constraints in traditional ammonia synthesis, thereby fostering a shift towards "green ammonia" production and significantly reducing the energy footprint.

10.
Small ; : e2312011, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431933

RESUMO

Recently, coupling the conventional low Pt-group-metal (low-PGM, LP) and emerging PGM-free (PF) moiety to form a composite LP/PF catalyst is proposed to be an advanced strategy to improve the intrinsic activity and stability of oxygen reduction reaction (ORR) catalysts. Milestones in terms of ORR mass activity are created by this type of catalyst. However, the specific synergy between LP and PF moieties has not been well elucidated. Herein, two model catalysts are synthesized, i.e., atomically dispersed Co/N/C supporting Pt single atoms (Co/N/C@Pt-SAs) and PtCo nanoparticles (Co/N/C@PtCo-NPs). Interestingly, the Co/N/C@PtCo-NPs catalyst presents higher ORR mass activity prior to Co/N/C@Pt-SAs. This is theoretically due to the dual "built-in electric field" in Co/N/C@PtCo-NPs: one electric field with a direction from Pt to Co in NPs and another from Pt to Co/N/C; that is, Pt gains higher electron density in Co/N/C@PtCo-NPs than that in Co/N/C@Pt-SAs, thus forming an asymmetric electron cloud, and regulating the adsorption and activation of oxygen-containing species. In addition, the existence of Co significantly decreases the average valence state of PtCo NPs, indicating a stronger affinity between PtCo NPs and Co/N/C substrate, to account for the enhanced stability.

11.
Transl Cancer Res ; 13(2): 1043-1051, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482434

RESUMO

Background: Accurate assessment of lateral cervical lymph node metastasis (LLNM) involvement is important for treating papillary thyroid carcinoma (PTC). Thyroglobulin is associated with LLNM, but there may be differences in the diagnostic value of serum thyroglobulin (sTg) and fine needle aspiration washout fluid thyroglobulin (FNA-Tg). Herein, we investigated the optimal cutoff value (OCV) of sTg and FNA-Tg and their diagnostic performance. Methods: We enrolled 116 PTC patients who underwent radical resection of thyroid carcinoma with lateral cervical lymph node dissection at the Affiliated Hospital of Zunyi Medical University from June 2018 to July 2022. We used the receiver operating characteristic (ROC) curve analysis to determine the OCV for sTg and FNA-Tg to diagnose LLNM in PTC patients. We also evaluated the performance of FNA-Tg, sTg, fine needle aspiration cytology (FNAC), and their combinations for diagnosis. Pathological results were the gold standard. Results: We performed 125 lymph node dissections, 106 had metastasis, and 19 did not. The OCV for sTg was 17.31 ng/mL [area under the curve (AUC) =0.760, sensitivity =78.30%, specificity =73.68%, and accuracy =77.60%]. Meanwhile, the OCV for FNA-Tg was 4.565 ng/mL (AUC =0.948, sensitivity =89.62%, specificity =100%, and accuracy =91.20%). The combination of FNAC and FNA-Tg presented the greatest diagnostic performance for LLNM detection in PTC patients. Moreover, serum antithyroglobulin antibody (TgAb) was not correlated with sTg or FNA-Tg levels. Conclusions: The cutoff value for the diagnosis of LLNM in PTC are sTg >17.31 ng/mL or FNA-Tg >4.565 ng/mL. The combination method of FNA-Tg and FNAC is the most optimal choice for the diagnosis of LLNM and is highly recommended for further clinical application.

12.
Adv Sci (Weinh) ; : e2308051, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350727

RESUMO

Molecular engineering of drug delivering platforms to provide collaborative biological effects with loaded drugs is of great medical significance. Herein, cannabinoid receptor 1 (CB1)- and reactive oxygen species (ROS)-targeting electrosprayed microspheres (MSs) are fabricated by loading with the CB1 agonist arachidonoyl 2'-chloroethylamide (ACEA) and producing ROS in a photoresponsive manner. The synergistic anti-tumor effects of ACEA and ROS released from the MSs are assessed. ACEA inhibits epidermal growth factor receptor signaling and altered tumor microenvironment (TME) by activating CB1 to induce tumor cell death. The MSs are composed of glycidyl methacrylate-conjugated xanthan gum (XGMA) and Fe3+ , which form dual molecular networks based on a Fe3+ -(COO- )3 network and a C═C addition reaction network. Interestingly, the Fe3+ -(COO- )3 network can be disassembled instantly under the conditions of lactate sodium and ultraviolet exposure, and the disassembly is accompanied by massive ROS production, which directly injures tumor cells. Meanwhile, the transition of dual networks to a single network boosts the ACEA release. Together, the activities of the ACEA and MSs promote immunogenic tumor cell death and create a tumor-suppressive TME by increasing M1-like tumor-associated macrophages and CD8+ T cells. In summation, this study demonstrates strong prospects of improving anti-tumor effects of drug delivering platforms through molecular design.

13.
Biology (Basel) ; 13(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392284

RESUMO

To study the effects of light color on sea urchin (Tripneustes gratilla), blue light (B, λ450nm), yellow light (Y, λ585-590nm), red light (R, λ640nm), green light (G, λ510nm), white light (W, λ400-780nm), and darkness (H) groups were established in a recirculating seawater aquaculture system. Six different LED light color treatment groups with a photoperiod of 12 L:12 D were tested for 30 days to investigate the effects of different light colors on the feeding, growth, and enzyme activities of T. gratilla (142.45 ± 4.36 g). We found that using different LED light colors caused significantly different impacts on the feeding, growth, and enzyme activity of T. gratilla. Notably, the sea urchins in group B exhibited better growth, with a weight gain rate of 39.26%, while those in group R demonstrated poorer growth, with a weight gain rate of only 26%. The feeding status differed significantly (p < 0.05) between groups B and R, with group B consuming the highest daily intake (6.03 ± 1.69 g) and group R consuming the lowest (4.54 ± 1.26 g). Throughout the three phases, there was no significant change in the viability of the α-amylase (p > 0.05). Conversely, the pepsin viability significantly increased (p < 0.05) in group B. The lipase viability consistently remained at the lowest level, with no notable differences between group W and group B. In group R, both the α-amylase and pepsin viabilities remained lower, whereas the lipase viability was noticeably greater in each phase than in group B (p < 0.05). Among the antioxidant enzymes, group R exhibited a trend of initial increase followed by decreases in catalase, superoxide dismutase, and glutathione peroxidase activities, particularly during the third stage (15-30 days), during which a significant decrease in antioxidant enzyme activity was observed (p < 0.05). Taken together, these findings suggest that blue light positively affects the growth, feeding, digestion, and antioxidant capacity of T. gratilla in comparison with those in other light environments, whereas red light had an inhibitory effect. Furthermore, T. gratilla is a benthic organism that lives on shallow sandy sea beds. Thus, as short wavelengths of blue and green light are more widely distributed on the seafloor, and long wavelengths of red light are more severely attenuated on the seafloor, shorter wavelengths of light promote the growth of bait organisms of sea urchins, which provide better habitats for T. gratilla.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38347801

RESUMO

BACKGROUND: Previous studies have found that matrine (MAT) effectively treated Ulcerative Colitis (UC). The purpose of this study is to explore its mechanism based on the HMGB1/NLRP3/Caspase-1 signaling pathway. METHODS: MAT was administered intragastrically to DSS-induced UC mice for 14 days. The Disease Activity Index (DAI) and histological staining were measured to detect histopathological changes in colon. The levels of IL-1ß, IL-6, and TNF-α in serum were measured by ELISA. The protein and mRNA expression of HMGB1/NLRP3/Caspase-1 in the colon were detected by immunohistochemistry, western Blotting or qRT-PCR. RESULTS: MAT improved the histological pathological changes of UC mice, as assessed by DAI, colonic length, and colonic mucosal injury. MAT also reduced colonic inflammatory damage by reducing the serum IL-1ß, IL-6, and TNF-α content and decreasing the expression of HMGB1, NLRP3, Caspase-1, and IL-1ß and proteins and mRNA in the colon. CONCLUSION: MAT could significantly alleviate DSS-induced UC symptoms by reducing the expressions of pro-inflammatory cytokines, such as IL-1ß, TNF-α, and IL-6, the mechanism of which is related to the inhibition of HMGB1/NLRP3/Caspase-1 signaling pathway.

15.
Biomed Pharmacother ; 171: 116091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171248

RESUMO

Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Lipocalina-2/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Macrófagos/metabolismo
16.
ACS Appl Mater Interfaces ; 16(2): 2330-2340, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165730

RESUMO

It remains a tremendous challenge to achieve high-efficiency bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) for hydrogen production by water splitting. Herein, a novel hybrid of 0D nickel nanoparticles dispersed on the one-dimensional (1D) molybdenum carbide micropillars embedded in the carbon layers (Ni/Mo2C@C) was successfully prepared on nickel foam by a facile pyrolysis strategy. During the synthesis process, the nickel nanoparticles and molybdenum carbide were simultaneously generated under H2 and C2H2 mixed atmospheres and conformally encapsulated in the carbon layers. Benefiting from the distinctive 0D/1D heterostructure and the synergistic effect of the biphasic Mo2C and Ni together with the protective effect of the carbon layer, the reduced activation energy barriers and fast catalytic reaction kinetics can be achieved, resulting in a small overpotential of 96 mV for the HER and 266 mV for the OER at the current density of 10 mA cm-2 together with excellent durability in 1.0 M KOH electrolyte. In addition, using the developed Ni/Mo2C@C as both the cathode and anode, the constructed electrolyzer exhibits a small voltage of 1.55 V for the overall water splitting. The novel designed Ni/Mo2C@C may give inspiration for the development of efficient bifunctional catalysts with low-cost transition metal elements for water splitting.

17.
J Am Chem Soc ; 146(2): 1244-1249, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38180816

RESUMO

Superconductivity was discovered in (InSe2)xNbSe2. The materials are crystallized in a unique layered structure where bonded InSe2 layers are intercalated into the van der Waals gaps of 2H-phase NbSe2. The (InSe2)0.12NbSe2 superconductor exhibits a superconducting transition at 11.6 K and critical current density of 8.2 × 105 A/cm2. Both values are the highest among all transition metal dichalcogenide superconductors at ambient pressure. The present finding provides an ideal material platform for further investigation of superconducting-related phenomena in transition metal dichalcogenides.

18.
Opt Lett ; 49(2): 411-414, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194581

RESUMO

We present an on-chip passive pump-rejection filter on an integrated silicon carbide (SiC)-on-insulator photonic platform. Our filters exploit the optical absorption from an amorphous silicon (α-Si) thin-film layer deposited on the top surface and on the sidewalls of the SiC waveguide to reject light with a wavelength below 1.0 µm. The filter has a simple design and can be readily fabricated using a standard semiconductor wafer fabrication process and can be integrated as a pump-rejection filter component for SiC-based nonlinear and quantum photonic chips. We experimentally demonstrate a pump-rejection efficiency exceeding 230 dB/mm for 780 nm wavelengths, while we extract an insertion loss of ∼1 dB for the O-, C-, and L-bands.

20.
Chem Sci ; 14(47): 13924-13933, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075638

RESUMO

Ni-rich cathodes with a radial ordered microstructure have been proved to enhance materials' structural stability. However, the construction process of radial structures has not yet been clearly elaborated. Herein, the formation process of radial structures induced by different doped elements has been systematically investigated. The advanced Electron Back Scatter Diffraction (EBSD) characterization reveals that W-doped materials are more likely to form a low-angle arrangement between crystal planes of the primary particles and exhibit twin growth during sintering than a B-doped cathode. The corresponding High Angle Annular Dark Field-Scanning Transmission Electron Microscopy (HAADF-STEM) analysis further proves that the twin growth induced by W doping can promote the migration of Li+. Simultaneously, the W-doped sample reduces the (003) plane surface energy and promotes the retention of the crystal plane, which can effectively alleviate the structural degradation caused by Li+ (de)intercalation. At a cut-off voltage of 4.6 V, the W-doped cathode displays a capacity retention rate of 94.1% after 200 cycles at 1C. This work unveils the influence of different element doping on the structure from the perspective of crystal plane orientation within primary particles and points out the importance of the exposure and orientation of the crystal plane of the particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...